

Welcome to py3exiv2’s documentation!

py3exiv2 is a Python 3 [https://docs.python.org/3/] binding to
exiv2 [http://exiv2.org/], the C++ library
for manipulation of EXIF,
IPTC and
XMP image metadata.
It is a python 3 module that allows your scripts to read and write metadata (EXIF, IPTC, XMP, thumbnails) embedded in image files (JPEG, TIFF, …).

It is designed as a high-level interface to the functionalities offered by
libexiv2. Using python’s built-in data types and standard modules, it provides
easy manipulation of image metadata.

py3exiv2 is distributed under the
GPL version 3 [http://www.gnu.org/licenses/gpl.html]
license.

The main content of the code was initially written by Olivier Tilloy for
Python 2 under the name pyexiv2 [http://tilloy.net/dev/pyexiv2/index.html].

Differences between py3exiv2 (Python 3) and pyexiv2 (Python 2)

The module’s name and the syntax are unchanged, your code written previously for Python 2 may run with py3exiv2, however there’s three thinks that you should be care.

	The deprecated IptcTag.raw_values was removed in py3exiv2, use IptcTag.raw_value instead.

	The pyexiv2.preview.Preview.data is not implemented, use pyexiv2.exif.ExifThumbnail.data instead.

	All the string returned by any Tag.value are unicode, but you don’t need to convert yours strings in bytes to set a value for a tag which only accept ASCII characters, this is the job of py3exiv2.

Contents:

	API documentation
	pyexiv2

	pyexiv2.metadata

	pyexiv2.exif

	pyexiv2.iptc

	pyexiv2.xmp

	pyexiv2.preview

	Tutorial
	Reading and writing EXIF tags

	Reading and writing IPTC tags

	Reading and writing XMP tags

	Accessing embedded previews

	Developers
	Getting the code

	Dependencies

	Building and installing

	Documentation

	Unit tests

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

API documentation

pyexiv2

The top-level module pyexiv2.

Attributes

	version_info

	__version__

	exiv2_version_info

	__exiv2_version__

Description

Top-level module. All other modules are imported from pyexiv2.

Documentation

Attributes

	
version_info

	A tuple containing the three components of the version number: major, minor, micro.

	
__version__

	The version of the module as a string (major.minor.micro).

	
exiv2_version_info

	A tuple containing the three components of the version number of libexiv2: major, minor, micro.

	
__exiv2_version__

	The version of libexiv2 as a string (major.minor.micro).

pyexiv2.metadata

	
class pyexiv2.metadata.ImageMetadata

	

Instance Attributes

	buffer

	comment

	dimensions

	exif_keys

	iptc_charset

	iptc_keys

	mime_type

	previews

	xmp_keys

Instance Methods

	copy(other, exif=True, iptc=True, xmp=True, comment=True)

	__delitem__(key)

	get_aperture(self)

	get_exposure_data(self, float_=False)

	get_focal_length(self)

	get_iso(self)

	__getitem__(key)

	get_orientation(self)

	get_rights_data(self)

	get_shutter_speed(self, float_=False)

	read()

	__setitem__(key)

	write(preserve_timestamps=False)

Description

The pyexiv2.metadata.ImageMetadata is a container for all the metadata embedded in an image.

It provides convenient methods for the manipulation of EXIF, IPTC and XMP metadata embedded in image files such as JPEG and TIFF files, using Python types. It also provides access to the previews embedded in an image.

Documentation

Instanciation

	
class pyexiv2.metadata.ImageMetadata(filename)

	Inherits: MutableMapping [https://docs.python.org/3/library/collections.abc.html?highlight=mutablemapping#collections.abc.MutableMapping]

Argument:

	filename str(path of an image file)

See read()

Attributes

	
buffer

	Return the image data as bytes. This is useful to reduce disk access, the data can be send to an image library.

Example with Pillow:

>>> from PIL import Image
>>> import io
>>> import pyexiv2
>>> meta = pyexiv2.ImageMetadata("lena.jpg")
>>> meta.read()
>>> byteio = io.BytesIO(meta.buffer)
>>> img = Image.open(byteio)
>>> img.show()

	
comment

	The image comment.

	
dimensions

	A tuple containing the width and height of the image, expressed in pixels.

	
exif_keys

	List of the keys of the available EXIF tags.

	
iptc_charset

	An optional character set the IPTC data is encoded in.

	
iptc_keys

	List of the keys of the available IPTC tags.

	
mime_type

	The mime type of the image, as a string.

	
previews

	List of the previews available in the image, sorted by increasing size.

	
xmp_keys

	List of the keys of the available XMP tags.

Methods

	
copy(other, exif=True, iptc=True, xmp=True, comment=True)

	Copy the metadata to another image. The metadata in the destination is overridden.
In particular, if the destination contains e.g. EXIF data and the source doesn’t,
it will be erased in the destination, unless explicitly omitted.

Arguments:

	other An instance of :class:pyexiv2.metadata.ImageMetadata, the destination metadata to copy to (it must have been read() beforehand)

	exif (boolean) – Whether to copy the EXIF metadata

	iptc (boolean) – Whether to copy the IPTC metadata

	xmp (boolean) – Whether to copy the XMP metadata

	comment (boolean) – Whether to copy the image comment

	
__delitem__(key)

	Delete a metadata tag for a given key.

Argument:

	key Metadata key in the dotted form familyName.groupName.tagName where familyName may be one of exif, iptc or xmp.

Raises KeyError if the tag with the given key doesn’t exist

	
get_aperture(self)

	Returns the fNumber as float.

	
get_exposure_data(self, float_=False)

	Returns the exposure parameters of the image.

The values are returned as a dict which contains:

	“iso”: the ISO value

	“speed”: the exposure time

	“focal”: the focal length

	“aperture”: the fNumber

	“orientation”: the orientation of the image

When a tag is not set, the value will be None.

Argument:

	float_ If False, default, the value of the exposure time is returned as rational otherwise a float is returned.

	
get_focal_length(self)

	Returns the focal length as float.

	
get_iso(self)

	Returns the ISO value as integer.

	
__getitem__(key)

	Get a metadata tag for a given key.

Argument:

	key Metadata key in the dotted form familyName.groupName.tagName where familyName may be one of exif, iptc or xmp.

Raises KeyError if the tag doesn’t exist

	
get_orientation(self)

	Returns the orientation of the image as integer.

If the tag is not set, the value 1 is returned.

	
get_rights_data(self)

	Returns the author and copyright info.

The values are returned as a dict which contains:

	“creator”: the value of Xmp.dc.creator

	“artist”: the value of Exif.Image.Artist

	“rights”: the value of Xmp.dc.rights

	“copyright”: the value of Exif.Image.Copyright

	“marked”: the value of Xmp.xmpRights.Marked

	“usage”: the value of Xmp.xmpRights.UsageTerms

When a tag is not set, the value will be None.

	
get_shutter_speed(self, float_=False)

	Returns the exposure time as rational or float or None if the tag is not set.

Argument:

	float_ If False, default, the value is returned as rational otherwise a float is returned

	
read()

	Read the metadata embedded in the associated image. It is necessary to call this method once before attempting to access the metadata (an exception will be raised if trying to access metadata before calling this method).

	
__setitem__(key, tag_or_value)

	Set a metadata tag for a given key. If the tag was previously set, it is overwritten. As a handy shortcut, a value may be passed instead of a fully formed tag. The corresponding tag object will be instantiated.

Arguments:

	key Metadata key in the dotted form familyName.groupName.tagName where familyName may be one of exif, iptc or xmp.

	tag_or_value (pyexiv2.exif.ExifTag or pyexiv2.iptc.IptcTag or pyexiv2.xmp.XmpTag or any valid value type) – An instance of the corresponding family of metadata tag, or a value

Raises KeyError if the tag doesn’t exist

	
write(preserve_timestamps=False)

	Write the metadata back to the image.

Argument:

	preserve_timestamps (boolean) – Whether to preserve the file’s original timestamps (access time and modification time)

pyexiv2.exif

This module provides the classes ExifTag, ExifValueError and ExifThumbnail.

	
class pyexiv2.exif.ExifTag

	

Instance Attributes

	description

	human_value

	key

	label

	name

	raw_value

	section_description

	section_name

	type

	value

Description

The ExifTag define an EXIF tag.

Documentation

Instanciation

	
class pyexiv2.exif.ExifTag(key, value=None, _tag=None)

	An EXIF tag.

Arguments:

	key The key of the tag in the dotted form familyName.groupName.tagName where familyName = exif.

	value The value of the tag.

Here is a correspondance table between the EXIF types and the possible python types the value of a tag may take:

	Ascii: datetime.datetime(), datetime.date(), str()

	Byte, SByte: str()

	Comment: str()

	Long, SLong: [list of] int

	Short, SShort: [list of] int

	Rational, SRational: [list of] fractions.Fraction

	Undefined: str()

Attributes

	
description

	The description of the tag.

	
human_value

	A (read-only) human-readable representation of the value of the tag.

	
key

	The key of the tag in the dotted form familyName.groupName.tagName where familyName = exif.

	
label

	The title (label) of the tag.

	
name

	The name of the tag (this is also the third part of the key).

	
raw_value

	The raw value of the tag as a string.

	
section_description

	The description of the tag’s section.

	
section_name

	The name of the tag’s section.

	
type

	The EXIF type of the tag (one of Ascii, Byte, SByte, Comment, Short, SShort, Long, SLong, Rational, SRational, Undefined).

	
value

	The value of the tag as a python object.

	
class pyexiv2.exif.ExifValueError(value, type)

	Exception raised when failing to parse the value of an EXIF tag.

Arguments:

	value The value that fails to be parsed

	type The EXIF type of the tag

	
class pyexiv2.exif.ExifThumbnail

	

Instance Attributes

	extension

	mime_type

	data

Instance Method

	erase()

	set_from_file(path)

	write_to_file(path)

Description

A thumbnail image optionally embedded in the IFD1 segment of the EXIF data.

The image is either a TIFF or a JPEG image.

Documentation

Instanciation

class pyexiv2.exif.ExifThumbnail(_metadata)

Argument:

	_metadata The ImageMetadata instance

Attributes

	
extension

	The file extension of the preview image with a leading dot (e.g. .jpg).

	
mime_type

	The mime type of the preview image (e.g. image/jpeg).

	
data

	The preview data as a Python list. The data can be send to an image library.

Example with Pillow:

>>> from PIL import Image
>>> import io
>>> from pyexiv2 import ImageMetadata, exif
>>> meta = ImageMetadata("lena.jpg")
>>> meta.read()
>>> thumb = exif.ExifThumbnail(meta)
>>> byteio = io.BytesIO(bytes(thumb.data))
>>> img = Image.open(byteio)
>>> img.show()

Methods

	
erase()

	Delete the thumbnail from the EXIF data. Removes all Exif.Thumbnail.*, i.e. Exif IFD1 tags.

	
set_from_file(path)

	Set the EXIF thumbnail to the JPEG image path. This sets only the Compression, JPEGInterchangeFormat and JPEGInterchangeFormatLength tags, which is not all the thumbnail EXIF information mandatory according to the EXIF standard (but it is enough to work with the thumbnail).

	Argument:

	
	path str(Path to a JPEG file).

	
write_to_file(path)

	Write the thumbnail image to a file on disk. The file extension will be automatically appended to the path.

Argument:

	path str(Path to write the thumbnail to) - without an extension.

pyexiv2.iptc

This module provides the classes IptcTag and IptcValueError.

	
class pyexiv2.iptc.IptcTag

	

Instance Attributes

	description

	key

	name

	photoshop_name

	raw_value

	record_description

	record_name

	repeatable

	title

	type

	value

Description

The IptcTag define an IPTC tag.

Documentation

Instanciation

	
class pyexiv2.iptc.IptcTag(key, value=None, _tag=None)

	An IPTC tag.

Arguments:

	key The key of the tag in the dotted form familyName.groupName.tagName where familyName = iptc.

	value The value of the tag.

This tag can have several values (tags that have the repeatable property).

Here is a correspondance table between the IPTC types and the possible python types the value of a tag may take:

	Short: int

	String: string

	Date: datetime.date

	Time: datetime.time

	Undefined: string

Attributes

	
description

	The description of the tag.

	
key

	The key of the tag in the dotted form familyName.groupName.tagName where familyName = iptc.

	
name

	The name of the tag (this is also the third part of the key).

	
photoshop_name

	The Photoshop name of the tag

	
raw_value

	The raw values of the tag as a list of strings.

	
record_description

	The description of the tag’s record.

	
record_name

	The name of the tag’s record.

	
repeatable

	Whether the tag is repeatable (accepts several values).

	
title

	The title (label) of the tag.

	
type

	The IPTC type of the tag (one of Short, String, Date, Time, Undefined).

	
value

	The values of the tag as a list of python objects.

	
class pyexiv2.iptc.IptcValueError(ValueError)

	Exception raised when failing to parse the value of an IPTC tag.

Attributes

	
value

	The value that fails to be parsed

	
type

	The IPTC type of the tag

pyexiv2.xmp

This module provides the classes XmpTag and XmpValueError and the following five functions to handle the XMP parser and name spaces.

	
pyexiv2.xmp.initialiseXmpParser()

	Initialise the xmp parser.

Calling this method is usually not needed, as encode() and decode() will
initialize the XMP Toolkit if necessary.

This function itself still is not thread-safe and needs to be
called in a thread-safe manner (e.g., on program startup).

	
pyexiv2.xmp.closeXmpParser()

	Close the xmp parser.

Terminate the XMP Toolkit and unregister custom namespaces.

Call this method when the XmpParser is no longer needed to allow the XMP
Toolkit to cleanly shutdown.

	
pyexiv2.xmp.register_namespace(name, prefix)

	Register a custom XMP namespace.

Overriding the prefix of a known or previously registered namespace is not allowed.

Arguments:

	name str() The name of the custom namespace (ending with a /), typically a URL (e.g. http://purl.org/dc/elements/1.1/)

	prefix str() The prefix for the custom namespace (keys in this namespace will be in the form Xmp.{prefix}.{something})

Raises:

	ValueError – if the name doesn’t end with a /

	KeyError – if a namespace already exist with this prefix

	
pyexiv2.xmp.unregister_namespace(name)

	Unregister a custom XMP namespace.

A custom namespace is identified by its name, not by its prefix.

Attempting to unregister an unknown namespace raises an error, as does attempting to unregister a builtin namespace.

Arguments:

	name str() The name of the custom namespace (ending with a /), typically a URL (e.g. http://purl.org/dc/elements/1.1/)

Raises:

	ValueError – if the name doesn’t end with a /

	KeyError – if the namespace is unknown or a builtin namespace

	
pyexiv2.xmp.unregister_namespaces()

	Unregister all custom XMP namespaces.

Builtin namespaces are not unregistered.

This function always succeeds.

	
class pyexiv2.xmp.XmpTag

	

Instance Attributes

	description

	key

	name

	raw_value

	title

	type

	value

Description

The XmpTag define an XMP tag.

Documentation

Instanciation

	
class pyexiv2.xmp.XmpTag(key, value=None, _tag=None)

	An XMP tag.

Arguments:

	key The key of the tag in the dotted form familyName.groupName.tagName where familyName = xmp.

	value The value of the tag.

Here is a correspondance table between the XMP types and the possible python types the value of a tag may take:

	alt, bag, seq: list of the contained simple type

	lang alt: dict of (language-code: value)

	Boolean: boolean

	Colorant: [not implemented yet]

	Date: datetime.date, datetime.datetime

	Dimensions: [not implemented yet]

	Font: [not implemented yet]

	GPSCoordinate: pyexiv2.utils.GPSCoordinate

	Integer: int

	Locale: [not implemented yet]

	MIMEType: 2-tuple of strings

	Rational: fractions.Fraction

	Real: [not implemented yet]

	AgentName, ProperName, Text: unicode string

	Thumbnail: [not implemented yet]

	URI, URL: string

	XPath: [not implemented yet]

Attributes

	
description

	The description of the tag.

	
key

	The key of the tag in the dotted form familyName.groupName.tagName where familyName = xmp.

	
name

	The name of the tag (this is also the third part of the key).

	
raw_value

	The raw value of the tag as a [list of] string(s).

	
title

	The title (label) of the tag.

	
type

	The XMP type of the tag.

	
value

	The value of the tag as a [list of] python object(s).

	
class pyexiv2.xmp.XmpValueError(ValueError)

	Exception raised when failing to parse the value of an XMP tag.

Attributes

	
value

	The value that fails to be parsed

	
type

	The XMP type of the tag

pyexiv2.preview

	
class pyexiv2.preview.Preview

	

Instance Attributes

	dimensions

	extension

	mime_type

	size

	data

Instance Method

	write_to_file(path)

Description

The Preview define a preview image (properties and data buffer) embedded in image metadata.

Documentation

Instanciation

	
class pyexiv2.preview.Preview(preview)

	A preview image embedded in image metadata.

Attributes

	
dimensions

	A tuple containing the width and height of the preview image in pixels.

	
extension

	The file extension of the preview image with a leading dot (e.g. .jpg).

	
mime_type

	The mime type of the preview image (e.g. image/jpeg).

	
size

	The size of the preview image in bytes.

	
data

	The preview data as a Python list. The data can be send to an image library.

New in version 0.6.0

Example with Pillow:

>>> from PIL import Image
>>> import io
>>> from pyexiv2 import ImageMetadata, exif
>>> meta = ImageMetadata("lena.jpg")
>>> meta.read()
>>> # try with the first one
>>> preview = meta.previews[0]
>>> byteio = io.BytesIO(preview.data)
>>> img = Image.open(byteio)
>>> img.show()

Method

	
write_to_file(path)

	Write the preview image to a file on disk. The file extension will be automatically appended to the path.

Argument:

	path str(path) The file path to write the preview to (without an extension)

Tutorial

This tutorial is meant to give you a quick overview of what py3exiv2 allows you
to do. You can just read it through or follow it interactively, in which case
you will need to have py3exiv2 installed.
It doesn’t cover all the possibilities offered by py3exiv2, only a basic subset
of them. For complete reference, see the API documentation.

Let’s get started!

Remember, the lib is named py3exiv2 but the top-level module, for compatibility reasons, is named pyexiv2. So, we import the pyexiv2 module:

>>> import pyexiv2

We then load an image file and read its metadata:

>>> metadata = pyexiv2.ImageMetadata('test.jpg')
>>> metadata.read()

Reading and writing EXIF tags

Let’s retrieve a list of all the available EXIF tags available in the image:

>>> metadata.exif_keys
['Exif.Image.ImageDescription',
 'Exif.Image.XResolution',
 'Exif.Image.YResolution',
 'Exif.Image.ResolutionUnit',
 'Exif.Image.Software',
 'Exif.Image.DateTime',
 'Exif.Image.Artist',
 'Exif.Image.Copyright',
 'Exif.Image.ExifTag',
 'Exif.Photo.Flash',
 'Exif.Photo.PixelXDimension',
 'Exif.Photo.PixelYDimension']

Each of those tags can be accessed with the [] operator on the metadata,
much like a python dictionary:

>>> tag = metadata['Exif.Image.DateTime']

The value of an ExifTag object can be accessed in two different ways:
with the raw_value and with the value attributes:

>>> tag.raw_value
'2004-07-13T21:23:44Z'

>>> tag.value
datetime.datetime(2004, 7, 13, 21, 23, 44)

The raw value is always a byte string, this is how the value is stored in the
file. The value is lazily computed from the raw value depending on the EXIF type
of the tag, and is represented as a convenient python object to allow easy
manipulation.

Note that querying the value of a tag may raise an ExifValueError if the
format of the raw value is invalid according to the EXIF specification (may
happen if it was written by other software that implements the specification in
a broken manner), or if pyexiv2 doesn’t know how to convert it to a convenient
python object.

Accessing the value of a tag as a python object allows easy manipulation and
formatting:

>>> tag.value.strftime('%A %d %B %Y, %H:%M:%S')
'Tuesday 13 July 2004, 21:23:44'

Now let’s modify the value of the tag and write it back to the file:

>>> import datetime
>>> tag.value = datetime.datetime.today()

>>> metadata.write()

Similarly to reading the value of a tag, one can set either the
raw_value or the value (which will be automatically converted to
a correctly formatted byte string by pyexiv2).

You can also add new tags to the metadata by providing a valid key and value
pair (see exiv2’s documentation for a list of valid
EXIF tags [http://exiv2.org/tags.html]):

>>> key = 'Exif.Photo.UserComment'
>>> value = 'This is a useful comment.'
>>> metadata[key] = pyexiv2.ExifTag(key, value)

As a handy shortcut, you can always assign a value for a given key regardless
of whether it’s already present in the metadata.
If a tag was present, its value is overwritten.
If the tag was not present, one is created and its value is set:

>>> metadata[key] = value

The EXIF data may optionally embed a thumbnail in the JPEG or TIFF format.
The thumbnail can be accessed, set from a JPEG file or buffer, saved to disk and
erased:

>>> thumb = metadata.exif_thumbnail
>>> thumb.set_from_file('/tmp/thumbnail.jpg')
>>> thumb.write_to_file('/tmp/copy')
>>> thumb.erase()
>>> metadata.write()

Reading and writing IPTC tags

Reading and writing IPTC tags works pretty much the same way as with EXIF tags.
Let’s retrieve the list of all available IPTC tags in the image:

>>> metadata.iptc_keys
['Iptc.Application2.Caption',
 'Iptc.Application2.Writer',
 'Iptc.Application2.Byline',
 'Iptc.Application2.ObjectName',
 'Iptc.Application2.DateCreated',
 'Iptc.Application2.City',
 'Iptc.Application2.ProvinceState',
 'Iptc.Application2.CountryName',
 'Iptc.Application2.Category',
 'Iptc.Application2.Keywords',
 'Iptc.Application2.Copyright']

Each of those tags can be accessed with the [] operator on the metadata:

>>> tag = metadata['Iptc.Application2.DateCreated']

An IPTC tag always has a list of values rather than a single value.
This is because some tags have a repeatable character.
Tags that are not repeatable only hold one value in their list of values.

Check the repeatable attribute to know whether a tag can hold more than
one value:

>>> tag.repeatable
False

As with EXIF tags, the values of an IptcTag object can be accessed in
two different ways: with the raw_value and with the value
attributes:

>>> tag.raw_value
['2004-07-13']

>>> tag.value
[datetime.date(2004, 7, 13)]

Note that querying the values of a tag may raise an IptcValueError if the
format of the raw values is invalid according to the IPTC specification (may
happen if it was written by other software that implements the specification in
a broken manner), or if pyexiv2 doesn’t know how to convert it to a convenient
python object.

Now let’s modify the values of the tag and write it back to the file:

>>> tag.value = [datetime.date.today()]

>>> metadata.write()

Similarly to reading the values of a tag, one can set either the
raw_value or the value (which will be automatically converted
to correctly formatted byte strings by pyexiv2).

You can also add new tags to the metadata by providing a valid key and values
pair (see exiv2’s documentation for a list of valid
IPTC tags [http://exiv2.org/iptc.html]):

>>> key = 'Iptc.Application2.Contact'
>>> values = ['John', 'Paul', 'Ringo', 'George']
>>> metadata[key] = pyexiv2.IptcTag(key, values)

As a handy shortcut, you can always assign values for a given key regardless
of whether it’s already present in the metadata.
If a tag was present, its values are overwritten.
If the tag was not present, one is created and its values are set:

>>> metadata[key] = values

The IPTC metadata in an image may embed an optional character set for its
encoding. This is defined by the Iptc.Envelope.CharacterSet tag.
The ImageMetadata class has an iptc_charset property that
allows to easily get, set and delete this value:

>>> metadata.iptc_charset
'ascii'

>>> metadata.iptc_charset = 'utf-8'

>>> del metadata.iptc_charset

Note that at the moment, the only supported charset that can be assigned to the
property is utf-8.
Also note that even if the charset is not explicitly set, its value may be
inferred from the contents of the image. If not, it will be None.

Reading and writing XMP tags

Reading and writing XMP tags works pretty much the same way as with EXIF tags.
Let’s retrieve the list of all available XMP tags in the image:

>>> metadata.xmp_keys
['Xmp.dc.creator',
 'Xmp.dc.description',
 'Xmp.dc.rights',
 'Xmp.dc.source',
 'Xmp.dc.subject',
 'Xmp.dc.title',
 'Xmp.xmp.CreateDate',
 'Xmp.xmp.ModifyDate']

Each of those tags can be accessed with the [] operator on the metadata:

>>> tag = metadata['Xmp.xmp.ModifyDate']

As with EXIF tags, the value of an XmpTag object can be accessed in
two different ways: with the raw_value and with the value
attributes:

>>> tag.raw_value
'2002-07-19T13:28:10'

>>> tag.value
datetime.datetime(2002, 7, 19, 13, 28, 10)

Note that querying the value of a tag may raise an XmpValueError if the
format of the raw value is invalid according to the XMP specification (may
happen if it was written by other software that implements the specification in
a broken manner), or if pyexiv2 doesn’t know how to convert it to a convenient
python object.

Now let’s modify the value of the tag and write it back to the file:

>>> tag.value = datetime.datetime.today()

>>> metadata.write()

Similarly to reading the value of a tag, one can set either the
raw_value or the value (which will be automatically converted to
a correctly formatted byte string by pyexiv2).

You can also add new tags to the metadata by providing a valid key and value
pair (see exiv2’s documentation for a list of valid
XMP tags [http://exiv2.org/tags-xmp-dc.html]):

>>> key = 'Xmp.xmp.Label'
>>> value = 'A beautiful picture.'
>>> metadata[key] = pyexiv2.XmpTag(key, value)

As a handy shortcut, you can always assign a value for a given key regardless
of whether it’s already present in the metadata.
If a tag was present, its value is overwritten.
If the tag was not present, one is created and its value is set:

>>> metadata[key] = value

Accessing to the tags of type XmpSeq <Property>Detail.
Example with Xmp.plus.Licensor wich is type XmpSeq LicensorDetail:

>>> base = "Xmp.plus.Licensor"
>>> # Always chek if the tag already exists
>>> try:
>>> seq = data[base]
>>> except KeyError:
>>> # Tag not set, create one. Note the value [""]
>>> tag = pyexiv2.xmp.XmpTag(base, [""])
>>> data[base] = tag
>>> key = "".join([base, "[1]/plus:LicensorID"])
>>> datum = pyexiv2.xmp.XmpTag(key, "https://iptc.org")
>>> data[key] = datum
>>> key = "".join([base, "[1]/plus:LicensorName"])
>>> datum = pyexiv2.xmp.XmpTag(key, "John Doe")
>>> data[key] = datum
>>> key = "".join([base, "[1]/plus:LicensorCountry"])
>>> datum = pyexiv2.xmp.XmpTag(key, "USA")
>>> data[key] = datum
>>> key = "".join([base, "[1]/plus:LicensorCity"])
>>> datum = pyexiv2.xmp.XmpTag(key, "Washington")
>>> data[key] = datum

If you need to write custom metadata, you can register a custom XMP namespace:

>>> pyexiv2.xmp.register_namespace('http://example.org/foo/', 'foo')
>>> metadata['Xmp.foo.bar'] = 'baz'

Note that a limitation of the current implementation is that only simple text
values can be written to tags in a custom namespace.

A custom namespace can be unregistered. This has the effect of invalidating all
tags in this namespace for images that have not been written back yet:

>>> pyexiv2.xmp.unregister_namespace('http://example.org/foo/')

Accessing embedded previews

Images may embed previews (also called thumbnails) of various sizes in their
metadata. pyexiv2 allows to easily access them:

>>> previews = metadata.previews

>>> len(previews)
2

They are sorted by increasing size. Let’s play with the largest one:

>>> largest = previews[-1]

>>> largest.dimensions
(320, 240)

>>> largest.mime_type
'image/jpeg'

>>> largest.write_to_file('largest')

Developers

If you are a developer and use py3exiv2 in your project, you will find here
useful information.

Getting the code

py3exiv2’s source code is versioned with
bazaar [http://bazaar.canonical.com/], and the main development focus (sometimes referred to as trunk), is hosted on Launchpad [https://code.launchpad.net/py3exiv2].

To get a working copy of the latest revision of the development branch, just
issue the following command in a terminal:

bzr branch lp:py3exiv2

Dependencies

To use py3exiv2:

	Python [http://python.org/download/] ≥ 3.2

	boost.python [http://www.boost.org/libs/python/doc/] ≥ 1.46

	libexiv2 [http://exiv2.org/] ≥ 0.20

To build py3exiv2:

	python-all-dev (≥ 3.2)

	libexiv2-dev (≥ 0.20)

	libboost-python-dev (≥ 1.45)

	g++

Some unit tests have a dependency on
python-tz [http://pytz.sourceforge.net/].
This dependency is optional: the corresponding tests will be skipped if it is
not present on the system.

Additionally, if you want to cross-compile py3exiv2 for Windows and generate a
Windows installer, you will need the following dependencies:

	MinGW [http://www.mingw.org/]

	7-Zip [http://7-zip.org/]

	NSIS [http://nsis.sourceforge.net/]

Building and installing

Linux

Open a terminal into the top-level directory (where is the file configure.py):

$ python3 configure.py

The configure script try to find the exact name of libboost_python3 wich is depending on your environment. If it can’t find the lib, give it the full path of this lib with the option –libboost. Example on Debian with Python-3.4:

$ python3 configure.py --libboost=/usr/lib/x86_64-linux-gnu/libboost_python-py34.so

Build the lib:

$./build.sh

The result of the build process is a shared library, libexiv2python.so, in the build directory:

$ ls build/
$ exiv2wrapper.os exiv2wrapper_python.os libexiv2python.so

And, if no error, install all the files:

$./build.sh -i

You will most likely need administrative privileges to the last step.

Documentation

The present documentation is generated using
Sphinx [http://sphinx.pocoo.org/] from reStructuredText sources found in the
doc/ directory. Invoke make html to (re)build the HTML documentation.

The index of the documentation will then be found under doc/_build/html/index.html.

Unit tests

py3exiv2’s source comes with a battery of unit tests, in the test/ directory.
To run them, invoke python3 TestsRunner.py.

Contributing

py3exiv2 is Free Software, meaning that you are encouraged to use it, modify it
to suit your needs, contribute back improvements, and redistribute it.

Bugs [https://bugs.launchpad.net/py3exiv2] are tracked on Launchpad.
There is a team called
py3exiv2-developers [https://launchpad.net/~py3exiv2-team] open to anyone
interested in following development on py3exiv2. Don’t hesitate to subscribe to
the team (you don’t need to actually contribute!) and to the associated mailing
list.

There are several ways in which you can contribute to improve py3exiv2:

	Use it;

	Give your feedback and discuss issues and feature requests on the
mailing list;

	Report bugs, write patches;

	Package it for your favorite distribution/OS.

When reporting a bug, don’t forget to include the following information in the
report:

	version of py3exiv2

	version of libexiv2 it was compiled against

	a minimal script that reliably reproduces the issue

	a sample image file with which the bug can reliably be reproduced

Index

 _
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W
 | X

_

 	
 	__delitem__() (built-in function)

 	__exiv2_version__

 	
 	__getitem__() (built-in function)

 	__setitem__() (built-in function)

 	__version__

B

 	
 	buffer

C

 	
 	comment

 	
 	copy() (built-in function)

D

 	
 	data

 	(built-in variable)

 	
 	description, [1], [2]

 	dimensions, [1]

E

 	
 	erase() (built-in function)

 	exif_keys

 	
 	exiv2_version_info

 	extension, [1]

G

 	
 	get_aperture() (built-in function)

 	get_exposure_data() (built-in function)

 	get_focal_length() (built-in function)

 	
 	get_iso() (built-in function)

 	get_orientation() (built-in function)

 	get_rights_data() (built-in function)

 	get_shutter_speed() (built-in function)

H

 	
 	human_value

I

 	
 	iptc_charset

 	
 	iptc_keys

K

 	
 	key, [1], [2]

L

 	
 	label

M

 	
 	mime_type, [1], [2]

N

 	
 	name, [1], [2]

P

 	
 	photoshop_name

 	previews

 	pyexiv2.exif.ExifTag (built-in class), [1]

 	pyexiv2.exif.ExifThumbnail (built-in class)

 	pyexiv2.exif.ExifValueError (built-in class)

 	pyexiv2.iptc.IptcTag (built-in class), [1]

 	pyexiv2.iptc.IptcValueError (built-in class)

 	pyexiv2.metadata.ImageMetadata (built-in class), [1]

 	
 	pyexiv2.preview.Preview (built-in class), [1]

 	pyexiv2.xmp.closeXmpParser() (built-in function)

 	pyexiv2.xmp.initialiseXmpParser() (built-in function)

 	pyexiv2.xmp.register_namespace() (built-in function)

 	pyexiv2.xmp.unregister_namespace() (built-in function)

 	pyexiv2.xmp.unregister_namespaces() (built-in function)

 	pyexiv2.xmp.XmpTag (built-in class), [1]

 	pyexiv2.xmp.XmpValueError (built-in class)

R

 	
 	raw_value, [1], [2]

 	read() (built-in function)

 	
 	record_description

 	record_name

 	repeatable

S

 	
 	section_description

 	section_name

 	
 	set_from_file() (built-in function)

 	size

T

 	
 	title, [1]

 	
 	type, [1], [2], [3], [4]

V

 	
 	value, [1], [2], [3], [4]

 	
 	version_info

W

 	
 	write() (built-in function)

 	
 	write_to_file() (built-in function), [1]

X

 	
 	xmp_keys

 nav.xhtml

 Table of Contents

 		
 Welcome to py3exiv2’s documentation!

 		
 API documentation

 		
 pyexiv2

 		
 pyexiv2.metadata

 		
 pyexiv2.exif

 		
 pyexiv2.iptc

 		
 pyexiv2.xmp

 		
 pyexiv2.preview

 		
 Tutorial

 		
 Reading and writing EXIF tags

 		
 Reading and writing IPTC tags

 		
 Reading and writing XMP tags

 		
 Accessing embedded previews

 		
 Developers

 		
 Getting the code

 		
 Dependencies

 		
 Building and installing

 		
 Linux

 		
 Documentation

 		
 Unit tests

 		
 Contributing

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

